3éﬂ N 8 13759
NASA TN D-1343

“ NASA TN D-1343

TECHNICAL NOTE

D-1343

NONADIABATIC THEORY OF
ELECTRON-HYDROGEN SCATTERING

A. Temkin

Goddard Space Flight Center
Greenbelt, Maryland

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON , July 1962







NONADIABATIC THEORY OF
ELECTRON-HYDROGEN SCATTERING

by
A, Temkin
Goddard Space Flight Center

SUMMARY

A rigorous theory of the s-wave elastic scattering of elec-
trons from hydrogen is presented. The Schrodinger equation is
reduced to an infinite set of coupled two-dimensional partial dif-
ferential equations. A zeroth order scattering problem is defined
by neglecting the coupling terms of the first equation. An exact
relation is derived between the phase shift of this zeroth order
problem and the true phase shift. The difference between these
is given by a rapidly convergent series whose terms correspond
adiabatically to multipole distortions of the hydrogen by the in-
coming electron. Recognition of the physical significance of the
zeroth order problem is considered basic to the understanding of
the scattering problem. The exchange approximation for s-wave
scattering is shown to be a variational approximation of the
zeroth order problem. A perturbation theory is introduced to
calculate the higher order corrections. The dipole correction has
an increasingly important quantitative effect in the limit of zero
energy. The effect of the long range part of this correction on
the scattering length can be expressed by a formula in terms of
inverse powers of a long range parameter R. Phase shifts are
calculated for both singlet and triplet scattering, including up to
quadrupole terms. The convergence is such that this number of
terms should yield better than four place accuracy. Uncertainties
in the calculated values decrease the accuracy to approximately
three significant figures.
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LIST OF SYMBOLS

E Total energy. E = -1 + k2. The term -1 is the energy of H atom and k? is the
energy of the impinging electron.

P, (cos 6,,) Legendre polynomials of order ! of cos§,,.

The distance of electron 1 from the nucleus.

r, The distance of electron 2 from the nucleus.
R_[r,) The s-eigenstates of hydrogen. In particular R, (r,) = 2re '’ is the ground
state.

§ Exact s-wave phase shift.
8y Phase shift of the zeroth order problem. That is,

lim (I>0(°)(rl,r2) = sin(krl + So)Rls(rz)

r, - ®

1
(i) 24
As The various order corrections to §,. Thatis, 8§ = &, + alg i),
I=1 j=1
9., The angle between the lines connecting electrons 1 and 2 to the nucleus.
@y(ryr,) Functions in the basic expansion of
1 < 1
Uiy fi,) = T, Z(ZI +1)% @r,,r,) Pyfcos 6,,) -

=0
®,(r,,r,) Only non-vanishing of the ¢,'s in the limitr, = . That is,

Lim ¥(r,r,,60,,) = lim & (r;r,)

ry - @ 1'l - ©
= sin (krl + 5) Rls(rQ)
© %) (r,.r,) Exact solution of the simplified s-wave problem (zeroth order problem).

¥ (r,r,0,,) Solution of the s-wave scattering problem.






NONADIABATIC THEORY OF
ELECTRON-HYDROGEN SCATTERING *1

by
A. Temkin
Goddard Space Flight Center

INTRODUCTION

The elastic scattering of electrons from atomic hydrogen is the most fundamental
three-body scattering problem of quantum mechanics. Nevertheless, the process of
theoretical understanding has been slow and is still not complete.

Specifically, the lack of a real quantitative understanding of this problem—as com-
pared with its counterpart, the ground state of helium problem—can be traced to two
causes. The first was the lack of a minimum principle which guarantees not only that a
certain quantity is variational in character, but, more important, that it is greater than
(or less than) the exact quantity to be evaluated. The lack of a minimum principle has
recently been overcome by Rosenberg, Spruch, and Q'Malley, who have derived minimum
principles for the scattering length (Reference 1) and who are attempting to generalize the
procedure to include phase shifts as well (Reference 2).

The second aspect of scattering problems which has slowed the process of quantita-
tive understanding is simply the fact that the scattering parameters are more sensitive
functions of the wave function than, say, the ground state energy. This sensitivity may be
illustrated in the case of the singlet scattering of electrons by hydrogen, where there is
known to be a singlet bound state of the H™ ion with a binding energy of 14.460 electron
volts (ev). The electron affinity ¢ is defined as the difference between this energy and that
of a hydrogen atom and a free electron. Clearly ¢ is the quantity of physical significance,
for only when it is negative is the H™ bound. Being a small difference between two large
numbers, ¢ is obviously sensitive to deviations in one of the large numbers. An approxi-
mation which undershoots the total energy by 6 percent predicts no binding. The fact that
the H- wave function corresponds to a barely bound system means that it must be related
to the low energy (e-H) scattering wave function. This relationship is expressed by the

"A sketch of this method has been published under the title "Nonadiabatic Theory of the Scattering of Electrons
from Hydrogen” in Phys. Rev. Letters 4(11):566-588, June 1, 1960.

tPublished in full and under the same title in Phys. Rev. 126(1):130-142, April 1, 1962'.
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approximate formula (Reference 3)

Ylel = 2+ 7rlel

which shows that the effective range parameters a and r, are also sensitive functions of
the wave function.’

The sensitivity of the scattering parameters (the phase shifts) to the wave function
manifests itself in another way. Suppose, in considering a scattering problem, that an
attempt is made to replace the interaction of the incident particle with the (many-body)
target by an equivalent one-body potential. In the bound state problem, it is known that
the Hartree or Hartree- Fock method leads to just such an equivalent potential. In the
case of scattering of a particle from a compound system consisting of particles different
from the incoming particle, Mittleman and Watson (Reference 6) have developed formal
expressions for just such a potential, and Mittleman (Reference 7} has modified the ap-
proach to apply to the scattering of electrons from hydrogen. However, the equivalent
potential is effectively a series expansion in which the derivation of successive terms is
a major calculational task, particularly for the in-close behavior of the potential, and in
which the physical meaning of successive terms becomes increasingly obscure. In addi-
tion, the potentials become quite nonlocal in character and appear to present considerable
difficulties for numerical solution (M. Mittleman, private communication).

The difficulty of evaluating a potential that is valid over all space is symptomatic of
the essentially non-two-body character of the scattering problem. The main idea of the
method that we shall present here is that the correct zeroth order problem is a three-
body problem. However, given the basic three-body problem, there are a variety of ways
of handling it. Theveafter, the corrections are separable in the first approximation. The
method we shall present is an extension of the method of Luke, Meyerott, and Clendenin
(Reference 8)? The chief formula is Equation 13, which relates the zeroth-order phase
shift &, with the exact phase shift 5. The main property of the terms on the right-hand
side of Equation 13 is that they constitute a rapidly convergent series. They also have a
natural physical interpretation as long-range polarization effects. The quantitative
importance of the lower of these terms is basically an expression of the increased impor-
tance of polarization in (most) scattéring problems as opposed to (most) ground state
energy problems. The polarization terms constitute the part of the wave function from
which the extra sensitivity of the scattering parameters stems. Yet the main contribution
of these functions comes from the (adiabatic) region where the functions are separable.
The nonadiabatic method, however, projects equations for these functions over all space;

IThe effective range formalism for the (e-H) problem has been effectively exploited by Ohmura, Hara, and
Yamaouchi (Reference 4) and by Ohmura and Ohmura (Reference 5).

2The author is indebted to Mr. John W. Cooper for having brought this paper to his attention.
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various devices can be employed to get reasonable estimates of the contributions of these
functions from the nonadiabatic region even without solving the associated partial differen-
tial equations. This will be the subject of the succeeding sections. We shall conclude with
the evaluation of fairly accurate electron-hydrogen phase shifts, and, more important,
with a reliable estimate of the error.

DECOMPOSITION OF THE S-WAVE EQUATION

The s-wave scattering of electrons from hydrogen is described by the Schrodinger
equation of zero total angular momentum for two electrons in the field of a singly charged
nucleus (assumed infinitely heavy). Such an equation can be reduced to a three-dimensional
partial differential equation which can be written (Reference 9)

2
B L P PURY (5 SRS U TS U S 2
TR r2 2 sin@,, 30, 5'"%1236,, (1)

where energy units are rydbergs (1 ryd = 13.6 ev) and length units are Bohr radii. The
fact that the s-wave equation can be reduced to a single three-dimensional equation is the
main mathematical reason that it is susceptible to a highly quantitative treatment,

Because the Legendre polynomials P, (cos 6} are eigenfunctions of the angular dependent
operator in the above equation, that is,

1 3. 3 _
’m;@; 51n912 3B " PI (cos 912) = =10 +1) P, (cos(;’”) R (2)

the wave function can be expanded into

@™
1
w(ry r5,8y,) = flsz YaT ¥ 1@, (r r,) P (cosf,,) . (3)
=0

Substitution into Equation 1 then gives an infinite set of coupled equations

32 32 _ 2 2 =
[arf + g - 10 +1) (r12 + ,2-2)+E +?1—+§-M”:’ @, (rlrz) = é: M,m(bm(rlrz) (4)
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where in the region r, > r,,

l+m n ™
M, = Y27+ 1)(2m + 1) 2 P, (cos 6) P _{cos 8} P _{cos 0) sin 66 . (5)
rlni’l 0 4 m n
n=0

Under exchange ( r, 2 r,) the three coordinateg Qfﬂthe s-wave problem transform‘
, and 8, ,~+ 8, .. Thus, the singlet and triplet v functions must have
the property ‘}'(rl,rz,ﬁu) = i‘-l’(rz,rl,6”> respectively. In terms of the expansion
function ¢, this implies (as a necessary and sufficient condition) that

accordingto r, = r

® (ryr,) = to (’2"1) .

The symmetry of the bracketed operator in Equation 1 further implies that the problem can
be solved completely in the region r, 2 r, by imposing the additional boundary conditions

(Di(rlrz)lrl:rz =0 triplet

9 .
grbl(r,rz)lrl:r2 = 0 singlet

where 3/3n means the normal derivative. Because of the r r, factor in Equation 3, we
have in both cases

o (r,0) = 0. )

We are restricting ourselves to the description of scattering below the threshhold
for inelastic scattering; thus, we must also have

Lim @ (r;r,) = sin (kry + )Ry, (ry)
r,—®

(8)
rlilnw o (ryry) = 0, 1>0.

1

Here k is the momentum of the scattered electron and is related to the energy by

E = -1+%?



andR, (r) is r times the (normalized) ground state radial function of the hydrogen.

The s-wave phase shifts § are then completely specified by the coupled set of
Equations 4 subject to the boundary conditions of Equations 6 through 8.

Clearly such a set of equations must be solved in some approximate manner. What
we would like to give in the sequel is a basis for such a method of successive approxima-
tions. The virtue of the method of approximation is that there is obvious physical signi-
cance in each stage and that both physical and mathematical reasons for the rapid conver-
gence of the series can be readily established. A central role in this scheme is the zeroth
order approximation, which we shall now consider.

THE ZEROTH ORDER APPROXIMATION
AND THE MULTIPOLE EXPANSION

Since
2 ry
M0 = 7/ ] +1 ’
" 2m+t1 r lm (9)

the equation for ¢, (rl,rz) can be written explicitly as

i + __3_2. + E +i = - 2 ._2-
Brf 3r 2 r, q’o("lrz) - Z Yom +1 rrtl e, - (10)
m=1
It is natural to attempt to approximate this equation by neglecting the right-hand side.
Consider

SCRIC 2\ o0 -
Brlz * or 2 tE4 r, @y 0(ryry) <0 (11)

subject to the boundary conditions of Equations 6 and 7 for (%, and with the asymptotic

form

lim d)o(“)(rlrz) = sin(kr + SO)R“(rz) . (12)
r,~®

It is important to realize that, although the right-hand side of Equation 12 is an exact
solution of Equation 11, &, is nof arbitrary.



. In the language of partial differential

equations, Equation 11 is an elliptic equa-
tion with Dirchlet boundary conditions along
= all sides for the triplet case and with
3 Neumann conditions along s, in the singlet
‘\g“: case (Figure 1). The boundary condition
Za .
3 - - T along s, is
w -~
5 5 /
02 0) _
Ezg 5 o (°°'r2) = CR  (ry) »
by
a-£
5 where Cis an arbitrary constant corre-
7 sponding to the arbitrariness in normaliza-
tion of {®. For a givenC, 5, is clearly
\\\\ independent of C. The uniqueness of the
S, : - : .
Dictance of Electron 1 > 0 solution for a given C then guarantees that
from the Nucleus, ry (Bohr radii) §, is unique.

Figure 1 — The r >r, triangle to which the

. . . A relation between §_ and & ¢
whole mathematical problem is restricted, etween o, an be

established by multiplying Equation 11 by
¢, and Equation 10 by &%), subtracting
and integrating over the half plane r, <r; this gives

r
1
0
J‘ o °IMy @ drdr, .

e rl ™ o
0y - 0 — E
j j (¢'0A12®0( ) (Do( )Alzq’o) drdr, [
0 vJo 0

m=1

The operator

3?2 9?2
= +
12 a2 orf

is the two-dimensional Laplacian, and using Green's theorem, we can write the left-hand
side of Equation 12 as

(" 3 3
- = 0 - 0
JJ (<I)OA12<I>0(°) ¢0<°>A”¢)0)dr,dr2 J(d)o ek XERRE XCD R = d)o)ds .
0vo s

The boundary s goes around the regionr, > r, and is thus the triangle indicated in Figure 1.
The line integral along s, is zero by virtue of Equation 7 and its counterpart for ¢ (%) .
The integral along s, is zero by Equation 6 so that we are left with only the integral



along s,. Here 3/3n = 3/3r , and using the asymptotic forms of ¢, and (), Equations
7and 12, and the assumption that R, is normalized, we arrive at our main formula

m
2

@ m T
1 1 r
- -2 _ d (b(O) ® d . 1
<) WL i fo P (13)
m=1

sin (5 ~ 8,)

Equation 11 is the zeroth order problem and 3 the zeroth order phase shift. It must
be emphasized that in spite of the separability of Equation 11 as a partial differential
equation, the problem is nonseparable by virtue of the nonseparable boundary condition
for ¢(% (see equation 18 below). The physical meaning of the equation is clear.
Electron 1 comes in seeing no charge at all while the orbital electron (electron 2) sees
the whole nuclear charge. When electron 1 gets inside the orbit of electron 2, it sees
the whole nuclear charge and becomes the orbital electron while electron 2 goes off as
the scattered particle seeing no charge. This, of course, is nothing but the shielding
approximation as it applies to a scattering problem. Yet, because the position of elec-
tron 1 is correlated with the position of electron 2, which itself is variable, this is dis-
tinctly a three-body problem. It is the thesis of this report that this rudimentary
three-body problem lies at the core of this, the s-wave elastic scattering problem, and
that attempts at further reduction either are equivalent to mathematical reformulations
of the problem or they bring in dubious approximations.

It is not difficult to show that the exchange approximation (Reference 10}, which uses
an ansatz ¥;, not depending on the angle ¢ ,, that is,

oW, < u(rl)'Rls(ri,) + u(r2>Rls(r‘) s

for the s-wave function, is in fact a variational solution of only that part of the original
Schrodinger equation corresponding to Equation 11. For if we consider the matrix element
of the complete interaction, + ri + ri - —rz— with any (symmetric or antisymmetric)

1 2 12

function of the form f(rl,rz) then?

2 2 2 o
jjf* <rl,r2)<?+—r—;-—m> f(rl,r2)d3rld3r2 aJO Jo
© ry !

= ZJ dr1 J

0 0

3Geltman (Reference 11) has computed variational phase shifts, using wave functions, which for s-waves are functions of 1,
and 1, only. According to our analysis, his phase shifts are approximations of the zeroth order 50 only. McEachran and
Fraser (Reference 12) and Smith (Reference 13) have used the close-coupling extension of the exchange approximation in-
cluding various numbers of excited s-states in their wave functions. These too can only approximate 50 .

2 2
rlrzf(rl,rz)l ‘;.2dr1dr2

2 2
r1":zf("1'r2>‘ r, dr,,
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where we have used the (anti) symmetry of f(r,,r,). (Note that other terms of the
Schrodinger equation will also yield matrix elements in this region multiplied by a factor
of 2.) We shall see in the next section that the exchange approximation yields phase shifts
practically identical* to 8,. Therefore, it is an excellent approximation of (%), vyet
from Equation 13 we see that it neglects the higher order corrections associated with the
function ;.

One more remark is in order concerning the zeroth order problem and ¢ in particular:
there are no long-range polarization forces associated with the zeroth order problem, so
that the boundary conditions associated with ¢ (%), aside from its s-wave sinusoidal be-
havior at infinity, are very much like a bound-state problem. This is quite different from
the phase shift of the whole problem in which there are long-range polarization forces,
which are, however, manifested in®, (1 > 0), A practical consequence of this is that 3
considered as a function of r, quickly assumes its asymptotic form as is typical for a
particle scattered from a short-range potential. In fact, the Hartree-Fock exchange
approximation potential is an exponentially decaying one. Thus, in contrast to 8§, which only
slowly assumes its asymptotic form, &, can truly be regarded as unvarying for larger,.
(This consideration is relevant in the derivation of Equation 52.)

The physical meaning of the functions ¢, can be gleaned from the adiabatic region
(defined as the regionr, > r, andr, >> 1). In this region, only the function ¢, fails to
vanish and only the first term (-2r '} of M,, in Equation 4 need be considered. Thus,
these equations reduce to

AL AU VO I AV .7 si“(kn*S)R
3,-12 ar } - r * T, 1 +k%e, = Y2l +1 rx“l 1.('2) . (14)

A solution of this equation, neglecting the operation 32/3r 2 on r ¢/*1 (which we assumeis
justified in this region), is

. 142 1
—p  sin (kr, +3) e, ("2 ' (15)
i Y2l +1 e/l € T TR A

These functions represent multipole distortions of the hydrogen atom caused by an
electron at some distance from the atom (Reference 14 and 15).

4A.lthough \,[JEA is gotten from a separable picture of the interaction, the requirement that it have the correct symmetry
makes it, in fact, nonseparable. The combination of the symmetry and nonseparability, the fact that the zeroth order
problem contains no long-range polarization which is also true of \IIEA, and the variational nature of the equations for
u(r) all combine to make /3, , an excellent approximation of @ {0) Reference 14 suesses the fact that correct treatment
of the symmetry goes a long way toward including the nonseparability (nonadiabaticity). This is the fortunate circum-
stance which has allowed investigators to calculate not unreasonable estimates of the low energy scattering of electrons
from atoms, starting the significant work of Morse and Allis (Reference 10).



Having obtained the adiabatic form of
®,, we can now qualitatively establish the
convergence of Equation 13. The configu-
ration space of each double integral can be
divided into roughly four regions, sche-
matically indicated in Figure 2. In region
D, the adiabatic region, the explicit forms

Distance of Electron 2
from the Nucleus, r, (Bohr radii)

of (%) and @, can be used to see that the 2/

contributions from that region go down

rapidly as a function of ;. In region C c

where r, rr, and both arelarge, the con-

tribution is very small in all cases. This AN \ D N
is because °) and the @, decay exponen- Distance of Electron 1

from the Nucleus, ry (Bohr radii)

tially there, roughly as exp [-<r1 * r2) 2 E] : Figure 2 — The regions of configuration space
1 . . which give different magnitude contributions to
(Notethat E < -7 for all the energies being the multiple integrals.

considered.) In region A where both r,
and r,are small, the ¢/'s{; > 0) are nec-

essarily small by virtue of the centrifugal barrier -7{7 +1) (r R r2'2) .which pushes the
, and r, (region B)
there will be an important quantitative contribution whose convergence as a function of 7
stems from the gradual disappearance of the region B itself as region A merges into

wave functions out from that region’ For intermediate values of r

regions C and D.

As a function of increasing energy, the multipole terms on the right-hand side of
Equation 13 have a decreasingly important effect on the cross section. Nevertheless the
quantitative contribution of these terms becomes more difficult to calculate. This is
because at the lowest energies the proportionate contribution from region D is sizeable,
yet the function is known there. For higher energies the proportionate contribution from
region D becomes quite small.

SOLUTION OF THE ZEROTH ORDER PROBLEM

It has already been emphasized that Equation 11, together with the boundary conditions

<D0(°)(r10) = 0, (16)

rlli_':"m (DO(O)(rlrz) = sin (krl + 80) Rls(rz) , 7

5The presence of the centrifugal terms for £ > 0 is the main reason why the associated &y can be considered separable in
zeroth order, whereas Qo(o)cannot.
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and

LRGSR (rlrz) 0 triplet

1

1 ra2

(18)

9 .
=5 90 =0 singlet

rl-rz

presents a highly nonseparable problem. Nevertheless, Equation 11 itself is separable,
and the separable solutions can readily be written down. We shall expand the exact solu-
tion @,(%) in terms of the totality of all such separable solutions which can possibly enter
the expansion:

(DO(D) = sin (krl + SO)Rls(rz) + (Z +Jdp>cne—f<nrl Rns(rg) . (19)

The sum plus integral means, as usual, that the continuum s states of hydrogen in addi-
tion to the discrete states must be included. For the discrete states

K = 1-n2- k—2 (20)
and for the continuum states
k= Y1 +p?-k?i, (21)

p

Since each term of Equation 18 is separately a solution of Equation 11, the only thing
which prevents any expansion from being an exact solution is its deviation from the bound-
ary condition, Equation 18. (Note that Equations 16 and 17 are automatically satisfied.)
We therefore determine 3, and the C_'s by the variational condition

—

aj | 06® (e, = r,)|2ar, = 0 triplet,
0

(22)

r, 7 rydrp = 0 singlet,



11

Substituting Equation 19 into the triplet integral in Equation 22 gives

I, = L |(I>°(°) (rl = 1-2)|2 dr,
(23)
© N N N
= J sin? (ke + 3 )R2(r)dr + 22 CY, + Z C2IME),, +2 XF CC (ME)
0 i>j=1 1 1)
j=1 =1
where
Tk, 24
(ME),, = f e T Ry R,,(r) dr (24)
0
and
Y, = J sin (kr + SO)e_KirRls(r)Ris(r) dr = cos 8, + sindN_, (25)
[}
The variation implicit in Equation 22 now becomes
oI
Ef— = 0, i = 1,2,3 N. ,
(26)
A
33,
The first N equations are
N
Y, +Z C,ME),, = O, i = 1,2,3,..., N.
j=1
These may be solved for the C, to give
= Lo (i) gj
C, = Get D eos 8, + D Psin 3| (27)
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where det is the determinant of the matrix elements:

(ME);; (ME);, » - - (ME);y
det = det (ME)M (ME)“ C (ME)QN
By, (), - - By

p(i> and D(*) are determinants obtained by replacing the it" column of the above ma-
trix by the columns (%, , %, ..., n,,)and (R R, ,M_,). respectively.

The variation with respect to 5 gives

BIT @ N w
55 " Jo sin [2(kr + 50)] RZ dr + 2 E c, -[ cos(kr + 80> R, dr = 0. (29)
0
i=1

0

Using Equation 27 for the C's, and noting that
N N
Joniom, = ) e, (30)
i=1 i=1
we can rewrite Equation 29 in the form

N
. 2 . . .
0 = cos (280) N,, * sin (250) N,. - et sind, cos 8, E (Dc(‘)T[ci- D‘(‘)ﬂsi)
i=1

2 N
- Jet (c0528° - sin? SO)Z D’“)ﬂci ,
i=1
where
N,, = J sin(2kr)Rx2! dr ,
[y}
(31)
1]
N,, = J cos {2kr)R2 dr .
0



We may readily solve for tan 25, since

13

N
2
NZ: - detZ Dl(i)nci

i=1

1"
i

(32)

tan 26
an 28 ~

1 R
N2c + det Z(Ds(i)nli - Dc(l)nci)

i=1

A completely analogous procedure may be used to solve for tan 25 o In the singlet

case. We obtain

N

1 2
7 - KB - g ) i

i=1

tan250 = - N ’ (33)
1 1 .
_2-Ac + kBs + dEtSZ (#le.(i) - ViDv(l))
i=l
and
D {i)cos8, +D (I)sind
_ 1 0 v o, 34
¢, = dets (34)
where
dets = determinant I ¥, ¥.dr ’ s (35)
0
in which
B 3 a -K Ty
‘pi = - 1<§r_1 +1§r—2' e Rn(rz) r.=r (36)
1772
Let )
vo= <-“ga—'+*aa—z>sin(kr + 8o)R, (r,) ;
0 o, R L - (37)

then u; and v, are quantities independent of & defined by

o
-J. Y¥,dr = py,cosd, ¢+ v, sinSo
0
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Also,

As = 8 J sin(2kr)[1 - 2r + (l - kz)rﬂe'z"dr y
0

A, = SJ cos (2kr) [1 = 2r = (1 - k2)r2fe2rdar
0

B, = 8'{ sin(2kr)r{l - rle 27 dr ,
4]

B, = BJ cos(2kr)ir{l ~ rle” 2 dr
0

The determinants D (!> and p(!) are obtained by replacing the ith column of dets by the

column vectors (u,;, #,yr---,uy) and (vys vgr--»vy), TESPectively.

It is worth pointing out the converse nature of this technique of solution as distin-
guished from those usually employed. In most cases the exact solution is approximated
in terms of functions which are not solutions of the equation, but which do satis{y all the
boundary conditions. In close-coupling, for example, the basis functions are solutions of
part but not all of the equations. The method presented here uses functions which are
complete solutions of the equation, but which do not satisfy all the boundary conditions.

In the present method, the smallness of the deviation from the boundary condition isa very
reliable index of the quality of the solution (provided that this difference is small enough).

The method of performing actual calculations is then as follows: A selection of N
discrete and/or continuum terms is made (we are necessarily limited to a discrete
Sampling of the continuum states), and all the matrix elements and integrals in Equations
39 and 33 are evaluated. (Integrals involving discrete states are trivial. Pertinent for-
mulas for continuum states are included in Appendix A.) This, then, can be used to eval-
uate tan 28, from Equations 32 and 33. Then 25, modulo = is determined from tan 23,.
The correct quadrant of 25, is determined by noting which value actually minimizes I;
(or 1,). This determines 3, modulo . (At this point it is known for (e-H) scattering that

8, ~ = from below as k ~ 0, SO that in fact no ambiguity remains.)®

Numerical calculations were coded for the IBM 7090 computer at the Goddard Space
Flight Center. The program allowed an arbitrary number of terms (limited only by the
capacity of the machine) to be included. In practice, however, the number of terms was

5This example is discussed in connection with an absolute definition of phase shift in Reference 16. The same definition
has also been adopted by Rosenburg and Spruch (Reference 2).
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restricted to less than 10 by an initially unexpected circumstance: As the number of
terms was increased, det, dets, and the related determinants approached zero so rapidly
that all the significant figures contained in the evaluation of the matrix elements were
quickly lost. Therefore, the number of terms had to be restricted so that at least some
significant figures remained. Actually, not too many significant figures need be known
because any set of C,’s and &, can be considered an approximate expansion of ¢(°) and
its quality can be measured by the smallness of I, or I,.

A sample of the pertinent results for the triplet and singlet calculations have been
collected in Tables 1 and 2. The last column contains the exchange approximate results
which, as was proved earlier, are a variational approximate solution of the zeroth order
problem. It is clear that the approximation is in excellent agreement with the exact re-
sult (see footnote 3 page 7). It can be seen from Tables 1 and 2 that the triplet phase
shifts are leass variable and therefore can be more accurately determined thanthe singlet
phase shifts. This disparity is indicative of the greater accuracy that is obtainable for the
triplet results in all parts of the calculation. Note that 1. and I, are positive definite.
These quantities were calculated from Equation 23 and its singlet counterpart, by using
numbers evaluated by the machine from the analytic formulas for (ME),, etc. The fact
that some of the entries are negative is due to the cancellation of all significant figures.
Thus, in those cases, a zero deviation from the boundary condition to within the accuracy
of the machine has been obtained. (The accuracy of the machine is estimated to be from
five to seven places.) Because of the loss of significant figures, the smallness of 1, and
I,in Tables 1 and 2 cannot be taken as an unambiguous measure of the reliability of 5,
for the various expansions of #(?). Nevertheless, somewhat better accuracy in 5, can be
obtained than can currently be achieved for the higher order corrections.

EVALUATION OF THE MULTIPOLE CORRECTIONS

Although the right-hand side of Equation 13 converges rapidly, there still remains
an assumption which must be true if the effectiveness of this method is not to be an
illusion: The coupling of the lower to the higher ¢, in Equation 4 must no? be such that
omitting the higher in the equation for the lower &, substantially changes the latter's
contribution to sin (5 - 3,). Actually, our assertion concerning the importance of the
adiabatic contribution guarantees this situation for small k. For in the adiabatic region,
only ¢, does not vanish, and this coupling is taken into account in Equations 14 and 15.
So, if this region gives the major contribution to the integrals on the right-hand side of
Equation 13, then we can be sure that the neglect of the higher order couplings cannot
materially change the value of the integrals.

We shall introduce a perturbation theory which is based on this assumption. The
perturbation theory does not do away with the partial differential equations. (In fact, the
essence of this method is that partial differential equations are the most natural way to
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include nonadiabaticity in both /%) and the higher ¢,.) Rather, it allows the equations to
be solved in a sequential manner. It also allows the construction of "sum rules" which,
to a more limited accuracy, allow for evaluation of the multipole terms without the need
to solve the associated partial differential equations’ beyond what is done in Equation 15.

A measure of the adiabaticity of a region of configuration space is the quantity
e /et We shall assign to this quantity an order of magnitude A"/? in accord with
the fact that the larger n is, the smaller this quantity is in a given region of configuration
space. The functions ®, are expanded according to

-

R S
(Dl = E X q)I(:)

i=0

This embodies the notion that the higher o,'s get successively smaller in the adiabatic
region and their behavior away from the adiabatic region can be expanded in a series about
their behavior in the adiabatic region.? Using these expansions and the order of magnitude
associated with adiabatic factor r,”/r %!, we can reduce Equation 4 to a set of

equations characterized by increasing powers of »2. To order A? we obtain:

A% (A“ + 2r72 +E) (1)0(0) = 0, (38)

W [ag, - 2(er? e rg7) vaest e B0 = 23 e R0 (39)
-1
N {8y, +2r7t # E)ofD) = 203) Zror2af®) (40)
[A” -6(r;? trgt) 20t 4 E] © 0 = 205) Frrr 0,0, (41)
%. -2 -2 -1 (1) R A e S (42)
A% |:A”-2(r1 tor, ) + 2r, +E] o, 5 r, ry 9 =

L _1
203) Zr,r 20,1 + 4015) Trpem 00

In conjunction with Sullivan and Cahill of NASA, we have been able to solve the second order partial differential equations
numerically. This will be the basis of very precise calculations.

8This expansion would not be very good in the regiont 1, if we were interested in the values of §). A re-expression of
our basic idea, however, would be to say that we need not know the wave function equally well in all space. Rather, we
must know (’Do(o) in all space, in accord with that function’s essentially three-body nature. For ! > 0, §; may be known
less well because only integrals over ®, conuribute to the phase shift; and in those integrals the contribution of the region
1, % 1, has only limited importance for the electron-hydrogen problem.
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The multipole series (Equation 13) becomes an expansion in integral powers of x:

r m
. 2
sin B-b = % AY (0) (K
( /j Yam+1 J J ® r b fidrydr, (43)

mip=y
mzl, x20

where A” is the expected order of magnitude of the correction to 5,. The first order
correction is

(44)

L]

r,
ASO WJ J- (°) — (I)(o)dr Jdr, .
1

This is the dipole contribution with the exact ®, replaced by ¢°>. The second order
contribution consists of two terms A’So(’) + A’So(”, where

pr3 (2 = f J (©) —23 e 0 dr dr, , (45)

1

. A25o(l)

® or
1 r
=2 29 —2 ¢ (D gr.d (46)
kV3 L L R drydry -

Of course, A25?)is the perturbation theoretic approximation of the quadrupole term,
but A25 (1 is a dipole term. It represents the first order correction on @, due to the
coupling to @, in the nonadiabatic region. The fact that this term enters in the order A2
means that this contribution is expected to an order of magnitude less than A3,. It will
be seen that the calculated results are excellently consistent with this assumption.

The calculation itself was carried out to order »?. This requires, in principle, the
solution of Equations 38 through 42, Actually, the fact that the asymptotic form of the
functions is known allows us to achieve reasonably accurate phase shifts without further
solving these equations. The adiabatic forms of the functions ¢,(%) are:

_2r1-(l+ 1) 142 11
0 N Y -r, 2 2 (47)
‘Dl( ) {21_+T sin (krl + SO)e 7+1 * 7 .

The asymptotic form of @,(!) in the adiabatic region is

kry, + 8.} _ 3
d)l“) x - 2 (ABO) icirr;‘__(])e r2<r_;‘ + r2> . (48)
1
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If a large portion of the various integrals comes from the adiabatic region, it is clear that
Equations 47 and 48 alone will give a not unreasonable estimate of their size. More about
these functions is known, namely their boundary conditions along r, = r,. In the triplet
case the function vanishes, and a factor which will do this for ¢,(°) can easily be
appended. We have used

-2 sin (kr 2 ri*? rl*t _ _
o0 = . )e K (l o [1 -l m} ' (49)
Y2 +1 r

The positive constant D, can be fairly unambiguously determined as will be shown below.
In the singlet case there is no simple factor which will make the normal derivative of
©,(®) zero along r; = r,. We have used

B -2 sxn(k1+8) 2’” 1-2’"1
% T Var i (s i) ()T =) s (50)

the cutoff factor having been inserted in such a way as to give 0,(%) the expected behavior
(DI(O) - rl’” in the limitr, - r, — 0.

The determination of D, was accomplished in the following way. By essentially the
same method as that used to derive Equation 13, "sum rules' of the form

1 1 1 2
(0) |~ +1{— + — (0) = (0))
jo L A 1 (1 1)<r12 !_22) (%) dr dr, )’Zl_‘(— J J rll” o dr, dr, (51)

can be derived from Equation 38 and the equations like Equations 39 and 41.

The functions ®,°) are known from the zeroth order calculation; thus the right-hand
sides of Equation 51 could be evaluated. The forms of Equations 49 and 50 were used in
conjunction with @(°) to evaluate the left-hand side as a function of D, . The adopted
values of D, were those which gave equality. (Some of the results are shown in Figures
3 and 4.) These values of D, were then used to evaluate the terms on the right-hand
side of Equation 43, in particular 88, A?8(%>, and 43 AR

The types of cutoffs we have used do not introduce any bending of nodal lines in the
r, > r, triangle. Such behavior is reasonable for the lowest energies. At high energies
the bending would be expected to become significant; thus, the errors intrinsic to the
calculation will probably go up.
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In calculating A25 (1) we have used the same type of cutoffs for ¢ (1) as for ¢ (9.
It is possible to derive "sum rules" which tend to indicate that the value of D to be used
should be somewhere between the dipole value D, and the quadrupoleD,. Nevertheless,
the contribution of this function from the nonadiabatic region is expected to be greater
than its contribution from the adiabatic region. In addition, judging from Equation 42, we
expect its behavior in the nonadiabatic region to be much more complicated there. Thus,
our evaluation of A%s (1) should be considered somewhere between a calculation and

an estimate.

In practice, all double integrals were done numerically. Thus, it was necessary to
stop the integration over r, at a finite pointr, = R. Itis important, however, to take
into account the contribution of the integral for r, > R in the limit of zero energy. For-
tunately, this can be done analytically. The analysis for the effect of this long-range
behavior on the scattering length has already been given.® A somewhat more careful
derivation yields

ata

_ ’ 1 0
a = alR) - a‘i— 2R2 f (52)

where a is the exact scattering length, a, is the scattering length of the zeroth order prob-
lem, and a(R) is the scattering length associated with the part of the wave function within
radial distances of R of the nucleus. Equation 52 is another result of long-range induced
polarization indicative of the basic difference between a bound-state and a scattering
problem. For a value of R = 25, a bound-state wave function has essentially assumed

its asymptotic form, whereas the portion of the wave function beyond R = 25 contributes
(negatively) almost 10 percent to the triplet scattering length.®* Equation 52 is valid for
any method in which only the part of the configuration space for r,, r, < R is included.

The contributions from large r die off rapidly as k is increased, to the extent that
they are negligible for our accuracy by k = 0.1. Tables 3 and 4 summarize the singlet
and triplet calculated results. The §,'s are a somewhat visual mean of the values in
Tables 1 and 2. The convergence of the higher terms is evident. The final 8's contain in
parentheses the estimated uncertainty of the last figure(s). The convergence is such
that all higher multipole contributions should be smaller than this uncertainty. The error
is again an estimate of those due to § and the higher multipoles. (The quantities in
parentheses in the other columns are not deviations from the electron-hydrogen phase
shifts, but rather from the exact phase shifts of well defined but different mathematical
problems.) The greatest absolute error of the higher multipoles is contained in A8
(although it contains the smallest proportional error). In the triplet case, the errors
have been estimated at from about 5 percent to 25 percent, for increasing k. In the

9This analysis is contained in Reference 17 together with the result of our triplet scattering length calculation. At that
time the significant reduction from the RSO bound (Reference 1) was completely unexpected.
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Table 3
Resumeé of Calculation for Triplet &

k 8, LWt Azéo( D A280( B ] s(polarized orbital)
ot | 2.338 (3) 1.76 (3) L7t (1)
0.01 | 3.11821(2) | 0.00504 | 0.000295| 0.000153 3.1237(4) 3.125%
0.05 | 3.025 (1) | 0.0193 0.0013 0.0008 3.046 (5) 3.049%
0.1 2.909 (1) | 0.0303 0.0021 0.0014 2.942 (10) 2.946%
0.2 2.6810 (5) | 0.0379 0.0021 0.0023 2.723 (10) 2.732
0.3 2.4630 (5) | 0.0392 0.0017 0.0026 2.516 (10) 2.519
0.4 2.259 (1) | 0.0379 0.0013 0.0028 2.301 (10) 2.320
0.5 2.072 (1) | 0.0363 0.0011 0.0027 2.112 (10) 2.133
0.75 | 1.683 (2) | 0.0328 0.0007 0.0024 1.719 (10) 1.745
0.8 1.617 (2) | 0.0282 0.0005 0.0018 1.647 (10)

tThe k = 0 entries are scattering lengths.

+These polarized orbital results are slightly different from those given in Temkin-Lamkin (Reference 20) because of
the fact that integration there was stopped at r = 20.

Table 4

Resumeé of Calculation for Singlet &

K 5, 23, Azsﬂ(l) azs 5 s (polarized orbital)
0f 7.8 (1) 5.6 (4) 5.7
0.01 | 3.0640(5) 0.026 -0.008 0.004 3.086 (4) 3.085(1)
0.05 | 2.759 (1) 0.117 -0.035 0.019 2.86 (2) 2.86
0.1 2.420 (3) 0.187 -0.045 0.030 2.59 (3) 2.58
0.2 1.895 (2) 0.215 -0.030 0.034 2.11 (5) 2.11
0.3 1.535 (10) | 0.189 -0.016 0.030 1.74 (6) 1.75
0.4 1.269 (1) 0.165 -0.009 0.026 1.45 (6) 1.47
0.5 1.066 (2) 0.148 -0.007 0.023 1.23 (6) 1.25
0.75 | 0.756 (2) 0.131 -0.0025 0.021 0.91 (6) 0.91
0.8 0.728 (2) 0.126¢ -0.002 0.020% 0.87f (6)

1The k = O entries are scattering lengths.
iThese entries are different from those quoted in a preprint of this material.
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singlet case, the estimated error ranged from 10 percent to 40 percent. We feel that

the errors allowed for are rather liberal, particularly in the triplet case. For that
reason, we have retained more figures than would seem to be justified by the error. The
polarized orbital phase shifts (Reference 15) are included as the last column.

DISCUSSION

The implications of the nonadiabatic theory for the various well-known techniques
of calculating (s-wave) scattering problems are clear. The exchange approximation, as
representative of the zeroth order problem, has a central role and is by no means a bad
approximation. The method of polarized orbitals (Reference 18) and to lesser extent the
various exchange adiabatic approximations (Reference 19 and 20) are legitimate next
order corrections. The application of these conclusions for electron scattering from
other atoms is perhaps even more significant, for in those cases it is difficult to do
better than the exchange approximation, But since the polarization is expected to act
even more classically, the inclusion of an exchange-adiabatic polarization potential
would seem eminently worthwhile where the atomic polarizability is non-negligible. The
quantitative alteration, in fact, can be much more pronounced than in hydrogen. In oxygen,
for example, the polarization potential decreases the cross section of the zero-energy
exchange approximation cross section by a factor of 8, and by a factor of 2 at energies of
10 ev (References 19 and 21). Both decreases seem now to be confirmed by experiment
(Reference 22 and 23).

There are, however, at least two related problems which it would also be well to put
on a rigorous basis, at least in the case of hydrogen. One is the scattering of higher than
s-partial waves, and the second is the inelastic scattering.

Concerning the first problem, we feel that physical intuition should be a reasonable
guide as to what techniques are best. Thus, for a given incident energy we would expect
the phase shifts to get increasingly further from the exchange approximation phase shifts.
This is expected to be so because the higher partial waves are concentrated further from
the center, where the adiabatic potential becomes increasingly important relative to other
effects. Or, to put it another way, for a given incident velocity, the further away a particle
orbit, the more adiabatic its motion appears (an observation that is easily verified on
passing airplanes).’® Nevertheless, the solution of this problem by an extension of our
nonadiabatic theory is not trivial. This is because the Schrddinger equation reduces to
sets of coupled three-dimensional partial differential equations (Reference 9). In addition,
at the lowest energies the polarization must be included in the zeroth order approximation
in accord with the fact that the effective range formula gets altered in its first term
(References 20, 25, and 26).

10The picture may not be as rosy as might be thought. Recent experiments by Neynaber, Marino, Rothe, and Trujillo
(Reference 24) on the (e-H) total elastic cross section, if they are correct, would indicate that the triplet p-wave phase
shifts are much closer to the exchange approximation results. This heightens the necessity for a rigorous quantitative
theory for the higher partial waves.
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The second problem is also difficult to handle by our present method. Consider
for example the s-wave part of the (1s-2s) excitation problem. This is a zero orbital
angular momentum equation governed again by Equation 1. The difficulty here is that the
boundary condition (Equation 8) must contain all states that are energetically accessible.
Even the solution of the zeroth equation (Equation 11) is enormously complicated for the
same reason. We are restricted to the statement that present s-wave close-coupling
approximations which include only s-excited states of hydrogen (References 13 and 27) are
again approximations of only the zeroth order problem (Equation 11). Here, however,
it appears that the zeroth order problem is a much more uncertain approximation of the
whole problem.
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Appendix A

Formulas for Integrals Involving Continuum Coulomb Wave Functions

General Discussion

Formulas for integrals involving continuum Coulomb wave functions are given here,
The authors would like to acknowledge the guidance of Dr. L. Maximon in performing these
integrations. All formulas are obtainable from the very general formulas of Alder et al.*
The results involve, among others, the various kinds of hypergeometric and Bessel func-
tions. The notation for these are standard aside from minor variations. Definitions may
be found in innumerable books; we mention only Morse and Feshbach.! Many of the for-
mulas are not manifestly real, nevertheless, they may all be shown to be real. Those
matrix elements which should be symmetric with respect to the interchange of initial and
final states can be shown to be symmetric. The reality and symmetry are, in fact, closely
related.

The continuum Coulomb functions are normalized as follows:
up(r) = yre iPr F(l + ip~1; 2; 2ipr)

uplr) = limu (r) = ]/%Jl ({EF) s

p~0

where Fla;b;x) is the confluent hypergeometric function; J_(x} is the Bessel function of
order n, In practice all integrals involving the zero energy Coulomb wave function
u,(r), denoted by the index I,, can be derived from the formulas involving a general p,
denoted by Ip, by suitable limiting processes. For the purpose of giving the discrete-
continuum matrix elements it is convenient to write the discrete wave functions in the

form

n
R (r) = e_'/"Zanrj ,
i-1

¥Alder, K., Bohr, A., et al., "Study of Nuclear Structure by Electromagnetic Excitation with Accelerated lons,”

Rev. Mod. Phys. 28(4):432-542, October 1956. (See in particular formula II.B.53.)
tMorse, P. M., and Feshbach, H., "Methods of Theoretical Physics,” New York: McGraw-Hill, 1953, p. I7_25
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where Coy is the coefficient of ¢} in
R {r} = (n)'1/2(2rn”)e’("/“) F(—n +1; 2; 2rn")

All tan~!functions are to be taken between —% and +%.

Triplet Formulas

Ip,.Ip, Factor 1 x Factor II , (Al)

where
; 2 2
PP P, "P) P tP, Py tpy| ifpy - px) A+ (py - p,)
Qe tan ! - tan™} + !
® 1 pp, ( A PPy A 2P,P, T\ 4 (py *9,)°
Factor I = )
[Kz +(py - 92)2] [V +(py * p2)2J
F F ! 11 2y[)\+i(pl _p’)} 1 1
actor IT = (-ip',ip‘;;x)- F(l-i',1+i';2;)
2 1 A+ (p, - p,)? Py Py x
and

F(a,b;c;x) are hypergeometric functions,
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(ME)IOJP Factor IIT x Factor IV , (A2)
where
- 22 -2 2, p_ _ 2p
Factor III ()\2 N p2)2 exp|:)\2 v p? P tan™ " T+ 24 p’]
- -4ip \ 2(\ + ip) . - 4ip
= M 1. . 3 1. v ———
Factor IV F<1p S "2 +p2> N + p? Fl1 +ip™7; 2 A2 + p?
A= oK+ xp
L] L J * L
M)y g, = A% AT () - 1 ()] (A3)
where
A = 2«,and I_ {x) are the Bessel function of imaginary argument.
. L] [ ] [ ]
n B
(ME), [, = Z C..9,(n,,) (A4)
j=1
where
Ap = Kn+l<P+n"l ,
© .
g, = J MelupCerar
y 0
Hence,
S I
5;“") N axﬂs-x
golr) = ()\2 + p’)"’exp [-2p'ltan'1(p/)\):| .
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WE), o = Lin ME), : (A5)
and
N, 4, = 25(A,)siné
T(C’Ip = 2S(>\p) cos &
>\p = 1+ <,
S()\P) = (2>\p2 1+ pz)-l exp (-p'1 tan'lp)

A+ plp - k)
_ 1 pip
g = tan l(‘,&“)+2_p-ln|:ﬁﬁ+p(p*kj|

P

T(s'w = limT(slIp
p~0

Nopo = Lim T 44,
p~0

where the only non-trivial limit is

8, = tan™! (—k—) - k)\o"l

Ko

Singlet Formulas

The symbols have the same meaning as the corresponding triplet formulas.

(SME)y, 1p, = TermV + Term VI, (A8)
where
= - 2 - 2
Term V = [2Klep2 +p2 4+ szz + a1 KPI(A +p? P,)] (ME)Ipl,Ipz
_ [_pl ! _yfP1 " P2 Py t Py . [P1 TPy
Term VI = 2exp Lplpz tan X 5P, tan N

i(py = Py :] F(1 - ipy ' 1 + ip; % 2 x)
+ Iny

2p,p, A2+ (91 + p2)2

-



(SME), o, = Term VIL + Term VIII, (A7)
where
Term VII = [2KPKD + K02 + A1 KP()\z + pz)] (ME)IP'",
3 2 22 _(p 2ip .y . _-4ip
Term VIII = ¥ er2exp I:}\z + p? +ptan (Q + N+ p? Fl1 + ip™*; 2; N+ p?
L ] [ ] L ] L
_ e"4/l\ i i
(SME) ;4 1o = 2X 510(&) - 311(>\) (A8)
® L ] [ ] [ ]
(SME)  ;, = Term IX + Term X (A9)
where

Tem 16 = (=078 57 €, [t * Mao) 85000 = 38501 (o)

Term X = Z CM[J("" + Knp) 55—1()‘@) - (j - 1) s;’-2<>‘np):|
ji=1 .
. ] L) L]
(SME),, ;, = Llim (SME)_ ., . (A10)
p—0
[} . [} L]
and
'u'lp = N:rIp Nslp + chrIp
VIp = NcrIp Nclp strIp
where

srlp

N = 2S(KP) [Kn sinf -~ k cos 5]
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NIIP = 2("n + 1) S(Kp) [(ZK“ + 1) sinf - kcos 6]

N, = 25(,) [, cos + ksin®]
Nei, 7 ZS(KP) (1 + K,) |:(2Kn + 1) cos & + k sin 9]
[ L] L ] L)
Hio = 1}"3 "L[p
Yio T ;:8 Yip

NASA-Langley, 1962
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